A Genetic Screen for Anchorage-Independent Proliferation in Mammalian Cells Identifies a Membrane-Bound Neuregulin
نویسندگان
چکیده
Anchorage-independent proliferation is a hallmark of oncogenic transformation and is thought to be conducive to proliferation of cancer cells away from their site of origin. We have previously reported that primary Schwann cells expressing the SV40 Large T antigen (LT) are not fully transformed in that they maintain a strict requirement for attachment, requiring a further genetic change, such as oncogenic Ras, to gain anchorage-independence. Using the LT-expressing cells, we performed a genetic screen for anchorage-independent proliferation and identified Sensory and Motor Neuron Derived Factor (SMDF), a transmembrane class III isoform of Neuregulin 1. In contrast to oncogenic Ras, SMDF induced enhanced proliferation in normal primary Schwann cells but did not trigger cellular senescence. In cooperation with LT, SMDF drove anchorage-independent proliferation, loss of contact inhibition and tumourigenicity. This transforming ability was shared with membrane-bound class III but not secreted class I isoforms of Neuregulin, indicating a distinct mechanism of action. Importantly, we show that despite being membrane-bound signalling molecules, class III neuregulins transform via a cell intrinsic mechanism, as a result of constitutive, elevated levels of ErbB signalling at high cell density and in anchorage-free conditions. This novel transforming mechanism may provide new targets for cancer therapy.
منابع مشابه
Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon.
In a screen for gene copy-number changes in mouse mammary tumors, we identified a tumor with a small 350-kb amplicon from a region that is syntenic to a much larger locus amplified in human cancers at chromosome 11q22. The mouse amplicon contains only one known gene, Yap, encoding the mammalian ortholog of Drosophila Yorkie (Yki), a downstream effector of the Hippo(Hpo)-Salvador(Sav)-Warts(Wts)...
متن کاملIntegrin regulation of membrane domain trafficking and Rac targeting.
Integrins are crucial regulators of essential cellular processes such as gene expression, cell proliferation and migration. Alteration of these processes is central to tumourigenesis. Integrin signals mediate anchorage dependence of cell growth, while growth of cancer cells is anchorage-independent. Integrins critically regulate Rho family GTPases, that are also involved in cell-cycle progressi...
متن کاملChemical-genetic analysis of cyclin dependent kinase 2 function reveals an important role in cellular transformation by multiple oncogenic pathways.
A family of conserved serine/threonine kinases known as cyclin-dependent kinases (CDKs) drives orderly cell cycle progression in mammalian cells. Prior studies have suggested that CDK2 regulates S-phase entry and progression, and frequently shows increased activity in a wide spectrum of human tumors. Genetic KO/knockdown approaches, however, have suggested that lack of CDK2 protein does not pre...
متن کاملGraves Expression Program in PC 3 Prostate Cells Is Required for Anchorage - Independent Growth and a Cell Proliferation Gene
Chromosomal abnormalities that give rise to elevated expression levels of the ETS genes ETV1, ETV4, ETV5, or ERG are prevalent in prostate cancer, but the function of these transcription factors in carcinogenesis is not clear. Previous work in cell lines implicates ERG, ETV1, and ETV5 as regulators of invasive growth but not transformation. Here, we show that the PC3 prostate cancer cell line p...
متن کاملStructural Overview Of Mammalian Zinc Metalloproteinases
Matrix metalloproteinases (MMP) are crucial for homeostasis (tissue remodelling and repair, bone growth, wound healing, etc.) and pathology (metastasis, angiogenesis, aneurysm rupture, etc.). Upregulated MMPs from macrophages are thus a two-edged sword, playing both defensive and aggressive roles. The related family of ADAMs (a disintegrin and a metalloproteinase) is sometimes overlooked becaus...
متن کامل